PHYSICAL REVIEW E 79, 046712 (2009)

ENCORE: An extended contractor renormalization algorithm
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Contractor renormalization (CORE) is a real-space renormalization-group method to derive effective Hamil-
tionians for microscopic models. The original CORE method is based on a real-space decomposition of the
lattice into small blocks and the effective degrees of freedom on the lattice are tensor products of those on the
small blocks. We present an extension of the CORE method that overcomes this restriction. Our generalization
allows the application of CORE to derive arbitrary effective models whose Hilbert space is not just a tensor
product of local degrees of freedom. The method is especially well suited to search for microscopic models to

emulate low-energy exotic models and can guide the design of quantum devices.
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I. INTRODUCTION

Identifying the emergent low-energy degrees of freedom
in a strongly correlated system is a highly nontrivial problem
requiring considerable physical intuition and a careful analy-
sis of available experimental data [1]. The contractor renor-
malization (CORE) method introduced by Morningstar and
Weinstein [2,3] is a tool to systematically perform this task:
by suitably selecting low-energy local degrees of freedom
and applying a real-space renormalization procedure, one can
in principle obtain an effective Hamiltonian which is simpler
than the original one and therefore (ideally) more amenable
to subsequent analytical or numerical treatment. For recent
applications of CORE see, for example, Refs. [4-9].

The idea behind CORE is to divide the lattice on which
the model is defined into blocks and to retain only a small
number of suitably chosen low-lying block eigenstates. The
low-energy eigenstates of the full Hamiltonian defined on a
cluster formed by two or more blocks are then projected onto
the restricted basis formed by tensor products of the retained
block states. By requiring that the low-energy spectrum of
the full problem is exactly reproduced, an effective Hamil-
tonian is obtained. The mapping onto a coarser-grained lat-
tice with redefined degrees of freedom is done at the expense
of having longer-range effective interactions. A successful
application of the method relies on a fast decay of the effec-
tive interactions, which in turn depends on a suitable choice
of the effective degrees of freedom and on the particular way
the lattice is divided into blocks, as well as on how the re-
tained block eigenstates are chosen. Because physical intu-
ition and a good idea of the relevant local degrees of freedom
are needed to obtain physically sound results, we believe that
this is the main reason why CORE has not found a more
widespread use.

The “inverse” problem of using CORE to find micro-
scopic models that map well onto a desired effective low-
energy Hamiltonian does not suffer from the aforementioned
problems: because the emergent degrees of freedom are
known a priori and their adequacy in describing the low-
energy physics of the device is enforced by design, the afore-
mentioned limitations of CORE can be used to our advan-
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tage. Whenever the effective Hamiltonian includes sizable
long-range interactions and/or states with a vanishing projec-
tion on the restricted basis are present in the low-energy
spectrum, one can conclude that the considered microscopic
model is not well approximated by the proposed low-energy
effective model. Given current interest in the emulation of
exotic phases via physical models (e.g., by using Josephson
junctions or cold atomic/molecular gases), we expect this
approach to be useful when designing manipulable quantum
tool boxes. Finally, we note that the step of dividing the
lattice into blocks is no longer required or even desirable
within this context and we thus extend the method to models
built from geometrically constrained degrees of freedom,
such as quantum dimer models [10,11], where the emergent
degrees of freedom cannot be described in terms of tensor
products of local states. Below we introduce an extension of
the CORE method applicable to arbitrary basis states of the
effective model and illustrate the application of the method
with an array of quantum Josephson junctions [12] used to
implement a topologically protected qubit [13].

II. EXTENDED CORE METHOD

We first review the standard CORE algorithm [2,3,14,15]
and then contrast it to the extended CORE (dubbed EN-
CORE) method proposed here.

A. Standard CORE algorithm

Given a Hamiltonian H defined on a lattice £, the stan-
dard CORE algorithm can be described as follows:

(1) Divide the lattice £ into disconnected small blocks B
and diagonalize the Hamiltonian 7 within a single block,
keeping M low-lying eigenstates {|¢,)})’. The subspace
spanned by tensor products of these block eigenstates on a
cluster C—formed by joining a number of elementary
blocks—defines the reduced Hilbert space within which the
effective model is derived.

(2) Diagonalize H on a cluster C consisting of N con-
nected blocks retaining the M=MV" lowest eigenstates
{|n)}f4 with energies €, and project them onto the basis
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formed by the tensor products of the block states,
b, ¢mN)}f4, forming the projected states {|i,)}".

(3) Orthonormalize the obtained projected states {|z,b,,>}f4
using a Gramm-Schmidt procedure

~ 1 - o~

m<n

where Z, stands for the normalization of the orthogonalized
state.
(4) The range-N renormalized Hamiltonian is then

M

H;\‘/m=2 6n|‘Zn><lZn|' (2)

n

By construction, this Hamiltonian has the same low-energy
spectrum as the original one.

(5) Writing Eq. (2) in terms of the tensor product states
{|<;Sm|,...,quN>}1 , we obtain the range-N effective interac-
tions between the blocks forming the cluster after subtracting
the previously calculated shorter-range interactions

N-1
hil...iN=H§5n_2 2 hir

N'=1 s niyn)

3)

sy

where (i, ...,iy) denotes the set of all connected range-N'
subclusters. The effective range-N Hamiltonian can then be
written as

Hy =2 bt 2 hyj+ 2 b+ (4)
i (ij) (inji k)
where h; is the block self-energy, h;; the interaction between
nearest-neighbor blocks, 4, a three-block coupling, etc. up
to range-N interactions.

The successful application of the above procedure relies
on a fast decay of the long-ranged effective interactions ap-
pearing in Eq. (4) and therefore one chooses the restricted set
of degrees of freedom by specifying the elementary blocks B
and the retained block states {| ¢, )}

B. ENCORE algorithm

It is possible to extend the ideas presented in Sec. II to
constrained effective models—e.g., quantum dimer models,
loop models, and string nets—for which the relevant degrees
of freedom are no longer formed by tensor products of block
states but, instead, by the set of configurations on a given
cluster satisfying the constraints of the Hamiltonian to be
emulated. We thus present an extended algorithm using al-
ternative ways of selecting the restricted degrees of freedom:

(1) Choose a finite-size cluster C and build a basis {| ¢,,)}}"
for the Hilbert space of the effective model. In the standard
CORE method this effective basis is a tensor product of the
relevant block states, whereas here it is comprised by all
constrained configurations on C. For example, for a quantum
dimer model we generate all M possible dimer coverings on
the cluster C.

PHYSICAL REVIEW E 79, 046712 (2009)

(2) Diagonalize the microscopic Hamiltonian 7 on the
cluster C, calculating the M lowest eigenstates {|n)})’ with
energies €, and project them onto the restricted basis
{| )}, forming the projected states {|¢,, )} [16].

(3) Orthonormalize by means of a Gramm-Schmidt pro-
cedure as in Eq. (1).

(4) The Hamiltonian within the restricted space is then
given by Eq. (2).

(5) Writing this Hamiltonian in the restricted basis
{1 we obtain the effective model

M

H = D €| B Pl U)Xl Do Y D (5)

!
m,m’ ,n

It is again possible to perform a cluster expansion within
ENCORE by using Egs. (3) and (4).

Note that the above discussion is for an orthonormal re-
stricted basis {|,,)}}", such as in the example discussed in
Sec. III. Small changes in the procedure are required if this is
not the case [10].

III. APPLICATION: EMULATION OF THE QUANTUM
DIMER MODEL

A. Array of quantum Josephson junctions

We apply the algorithm described in Sec. II B to extract
the two-dimer flip amplitude ¢ for a Josephson-junction array
introduced by Ioffe er al. [12] to emulate a quantum dimer
model (QDM) [10] on a triangular lattice. This model—first
investigated by Moessner and Sondhi [11]—has the desired
properties needed to implement a topologically protected qu-
bit and is given by

H=H,+Hq+H,

with

Hy ==ty [[ )0 /1+1/ (=]

Yoy

+o > [T+ 10 /);
= (6)

and similar definitions for H o and H, . Parallel dimers on
the same rhombus (henceforth we refer to such configura-
tions as flippable rhombi) flip with an amplitude ¢ and inter-
act via a potential strength v; the sum runs over all rhombi
with a given orientation. Moessner and Sondhi [11] showed
that a topologically ordered liquid phase exists over a finite
region of the model’s phase diagram (0.82=<v/r=1), some-
thing confirmed in a number of subsequent studies
[12,17-19].

The Josephson-junction array (JJK) can be described by
the generalized Bose-Hubbard model
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FIG. 1. (Color online) Josephson-junction array used to emulate
the quantum dimer model on a triangular lattice (shaded lines, el-
lipses represent the dimers; see Refs. [12,13] for details). X-shaped
superconducting islands (thick black lines) form a kagome lattice
with normal-state star-shaped islands (thin black lines) placed at the
center of every hexagon of the kagome lattice. Cooper pairs hop
between nearest-neighbor X-shaped islands with an amplitude
given by the Josephson current J,,. A large ratio between the capaci-
tances C; and Cj, ensures an on-hexagon repulsion Ej., to emulate
the hard-core dimer constraint. Figure adapted from Ref. [13].

1 A T

H=2 2 n,Chame= 1 2 (bjby+ bib)), (7
Jok (isk)

where the positions of the X-shaped islands in the array are

denoted by the indices j and k and (j,k) represents nearest-

neighbor pairs on the kagome lattice (see Fig. 1). nj=b;bj is

—

the bosonic occupation number at site r;, J, is the Josephson

current between two X-shaped islands, and C is the array’s
capacitance matrix. We restrict the analysis to the case of
hard-core bosons [13].

B. Two-dimer flips

In this example we focus on the off-diagonal dimer flip
term 7 in Eq. (6) from the microscopic model [Eq. (7)] with
the following set of capacitances: C,=1, Cy=0.25, C;=2.5,
and C,=0.5 (see Fig. 1). Using ENCORE these are obtained
from Eq. (5): the transition amplitude between dimer con-
figurations |¢,,) and |¢,,) (m#m') is the matrix element
H(m,m’). Our results have been obtained on the clusters
shown in Fig. 2.

The dominant off-diagonal term in the effective Hamil-
tonian is the two-dimer flip with amplitude 7. This process
involves the creation of a virtual state with a doubly occu-
pied hexagon, with energy Ei.,, in the kagome lattice and
occurs with amplitude = J7/ Ey, [12,13]. Two-dimer flips in
the cluster with ten hexagons are shown in Fig. 3(a). Al-
though the amplitudes for all these are ideally equal, there
are small deviations, e.g., by the configuration of the neigh-
boring dimers (effects of Coulomb interactions) or the open
boundaries. All two-dimer flips depicted in Fig. 3(a) can be
seen as being correlated and are considered individually at
the algorithmic level.

Figure 4(a) shows results for ¢ as a function of the Joseph-
son coupling J, for the various clusters and in comparison to
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FIG. 2. Open-boundary clusters studied: (a) NX2 (here N=3)
hexagon ladders; (b) ten-hexagon cluster.

second-order perturbative results. Results for the ten-
hexagon cluster are obtained by averaging the amplitudes for
the processes depicted in Fig. 3(a); amplitudes for the indi-
vidual processes are shown in Fig. 4(b). The results agree up
to a point [vertical dashed lines in Figs. 4(a)—4(c)] where the
mapping onto a QDM fails. This agreement is an indication
that, for capacitances and Josephson currents leading to a
valid mapping, the low-energy physics of the JIK array is
indeed described by a QDM with local dimer resonances.
Furthermore, it also points to the absence of sizable finite-
size effects in our results.

C. Multidimer flips: Breakdown of the mapping

Whereas a standard CORE expansion proceeds by consid-
ering clusters comprising an increasing number of sifes, an
ENCORE expansion for the JJK array, due to the dimers’
hard-core constraint, is performed in terms of the number of
dimers in a cluster. The analysis of multidimer terms can be
used to gauge the validity of the mapping onto a QDM: large
amplitudes for multidimer flips indicate that the device is not
properly described by the effective model. We denote the
summed absolute value of the amplitudes associated with
these multidimer flips by 3, which are directly obtained as

FIG. 3. (Color online) Nonequivalent dimer flips in the ten-
hexagon cluster [Fig. 2(b)], comprising (a) two, (b) three, (c) four,
and (d) five dimers. Dimer flips are represented by their associated
transition graph: dimers (thick black lines) flip to new positions
(thick light lines) while observing the hard-core constraint. Only the
underlying triangular lattice of the JJK array is shown (shaded lines
in Fig. 1). The quantity 3 used for gauging the validity of the
mapping onto a QDM is defined via the multidimer flips enclosed
by dashed lines.

046712-3



ALBUQUERQUE, KATZGRABER, AND TROYER

2.50 T T T : 1
[ ' ]
F C=1-C,=025-C=25-C=05 | ]
20F 1 ! 2
"I — Perturbative results | A
[ 2x2 y ]
Fooo3x2 "% N
_15F ooax2 Y
N [ AMAS5Xx2 4
£ [ vV 10 Hex. ! ]
1.0F ! .
L | ]
[ ! ]
05 ' i
T @
L | ]
! .
Y P P P I .
5 1.0 1.5 2.0 2.5 3.0
J, (mK)
[T m‘:m,)o_zs
F 1
1.5 r .
I 5 [ 0.2
| A o
L | [ ]
—1.0F | C i 015
M S : [ : ] -
=) [ ] ~
T i i N I
I | r -
I L I 4
0.5 ! i -
i | L - J0.0s
1 - 1 4
1 B L 1 ,
1 (b) | b HOE
R S I W S 00885 et IR N SR
05770715 20 25 30 05 1.0 15 20 25 30
J_ (mK) J,, (mK)

FIG. 4. (Color online) (a) Amplitude for the two-dimer flip # in
the JJK array obtained from the ENCORE analysis of the finite
clusters shown in Fig. 2. The (red) solid curve represents second-
order perturbation results. (b) Results for the ten-hexagon cluster
are obtained as the average (triangles) of the amplitudes of the
two-dimer processes depicted in Fig. 3(a). (c) Added absolute val-
ues for the amplitudes associated with multidimer flips (). When
3, is large the mapping onto the QDM breaks down (vertical dashed
lines). Data for C.=1, Cx=0.25, C;=2.5, and C,=0.5 (adapted
from Ref. [13]).
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the off-diagonal matrix elements of the effective Hamiltonian
associated with the multidimer flips enclosed by dashed lines
in Figs. 3(b)-3(d). Figure 4(c) shows 2 as a function of the
Josephson current J;,. A sudden increase in 2 at the same
value of J, for which different results for 7 start to deviate
from each other in Figs. 4(a) and 4(b) indicates the break-
down of the mapping. The appearance of “intruder states” in
the low-energy spectrum with negligible overlap with the
hardcore dimer configurations also indicates the breakdown
of the mapping. The vertical dashed line in Fig. 4(c) indi-
cates the point where the first intruder state appears. As Jj,
increases and charge fluctuations start to dominate, intruder
states displaying multiply occupied hexagons in the JJK ar-
ray violating the hard-core dimer constraint have their energy
lowered, eventually causing some of the projected states
{0} to vanish.

IV. SUMMARY

We have presented an ENCORE algorithm suitable for
constrained effective models whose basis states are not sim-
ply tensor products of local block states. We find that CORE
is very effective in the design of quantum devices for emu-
lating exotic phases. The inadequacy of the restricted set of
degrees of freedom in accounting for a system’s low-energy
behavior is reflected by the presence of long-range terms in
the effective Hamiltonian obtained from CORE and is used
as a criterion in deciding on whether successful emulation is
achieved.
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